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���,QWURGXFWLRQ

Gas-liquid two-phase stratified flow in horizontal ducts is frequently encountered in practical applications such as
nuclear reactors, oil and gas pipelines, steam generation and refrigeration equipment. The accurate prediction of
pressure gradient and void fraction in gas-liquid two-phase stratified flow is of both scientific and technological
interests. The ‘mechanistic’ model due to Taitel and Dukler (1976) has been widely used, which is a one-dimensional
two-fluid model with closure relations for the wall and interfacial shear stresses calculated with single-phase flow
correlations. However, the Taitel and Dukler model neglects the detailed velocity profile structure and calculates the
wall and interfacial shear stresses via empirical correlations based on the averaged velocities.

With the recent advent of high-speed computers and the development of advanced turbulence models, the
Computational Fluid Dynamics (CFD) techniques have been applied for the simulation of stratified gas-liquid two-
phase flow. Shoham and Taitel (1984) presented one of the early two-dimensional numerical solutions of fully
developed turbulent-turbulent gas-liquid flow in horizontal and inclined pipes. The gas phase was treated as bulk flow,
while the liquid phase momentum equation in the bipolar coordinate system with an algebraic turbulent model was
solved by using a finite difference method. Also using the bipolar coordinate system, Issa (1988) modeled stratified
flow, with a smooth interface surface, but solved the axial momentum equation in both gas and liquid phases with the
standard κ�ε model. Wall functions were used in the solid boundaries. The results for flow in a 25.4 mm diameter pipe
agree reasonably with predictions given by the mechanistic model of Taitel and Dukler (1976). Newton and Behnia
(2000) used a low Reynolds number κ�ε model that allows the solution of the turbulent-turbulent stratified flow
problem without the use of empirical wall functions. The only empirical information required is the specification of
damping functions in the low-Reynolds number turbulence model. The numerical results shown are in good agreement
with experimental data of a 50 mm diameter pipe (Newton and Behnia, 1996) and indicate that the minor tuning of the
wall damping functions performed has little effect on the results. More recently, stratified wavy two-phase flow has also
been studied numerically (Meknassi et al., 2000; Newton and Behnia, 2001; Berthelsen and Ytrenhus, 2005; Ghorai and
Nigam, 2006).

In this work, we solve the Reynolds averaged Navier Stokes equations (RANS) with the κ�ω model for a fully
developed stratified gas-liquid two-phase flow using the finite element method. The ωκ − closure model was
developed by Wilcox (2000) and is considered substantially more accurate than N� model in the near wall layers
(Menter, 2003). The main drawback of the ωκ − model is that the -equation shows a strong sensitivity to the values
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of  in the freestream outside the boundary layer (Menter, 1992), which has largely prevented the equation from
UHSODFLQJ� WKH� �HTXDWLRQ�DV� WKH� VWDQGDUG�VFDOH�HTXDWLRQ� LQ� WXUEXOHQFH�PRGHOLQJ��+RZHYHU�� LW� LV� H[SHFWHG� WKDW� WKH�κ�ω
model should have a better performance in the prediction of gas-liquid two-phase stratified flow, as no freestream
boundary condition of  ω is needed in the modeling. Following Issa (1988) and Newton and Behnia (2000), a smooth
and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress
across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational
formulation. The mathematical model and the variational formulation are presented in next section. The numerical
techniques are then presented including the flow solver and the Newton-Raphson root-finding scheme. The numerical
solution is then verified for the single-phase flow over a wide range of Reynolds number.  For each given interface
position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. The Newton-
Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position
and pressure gradient for a given pair of volumetric flow rates. The numerical results are then compared with available
experimental data. The experimental facility and the ultrasonic pulse-echo technique are described.

���7ZR�SKDVH�VWUDWLILHG�IORZ�PRGHO
Let us consider a fully developed stratified gas-liquid two-phase flow in a horizontal pipe. In view of the symmetry

of the flow with respect to the vertical plane, only a half-pipe cross-section is considered in the present model. Fig.1
shows schematically the open bounded domains occupied by the liquid and gas phases, which are denoted by IΩ and

JΩ , respectively. We consider that the volumetric flow rates of the phases, I4 and J4 , are given.

The interface between the phases is assumed to be a horizontal plane. However, the interface position is unknown.
In fact, it will be determined as a function of the given flow rates, pipe diameter and the physical properties of the liquid
and gas phases. Refering to Fig.1, the gas-liquid interface is represented by intΓ , the symmetry boundary is denoted by

VΓ and the pipe wall is FΓ . We also define the overall open bounded domain intΓ∪Ω∪Ω=Ω JI .

The Reynolds Averaged Navier-Stokes (RANS) approach is adopted to describe the turbulent flow in both phases.
For developed turbulent flow, the two-phase flow model is described by the following equations, defined within each
open bounded domain LΩ (L � meaning phase I and L ��meaning phase J).

( ) 0=−∇⋅∇ ]G
SGX$L (1)

( ) 02 =+−∇⋅∇ LLL 6% κωρβκ (2)

( ) 012
1 =+−∇⋅∇ LLL 6&

κ
ωαωρβω (3)

In the above equations the flow, with velocity u, is aligned to co-ordinate z. The kinetic energy of turbulence is
represented by κ and the dissipation per unit turbulence kinetic energy is denoted by ω . Because the flow is assumed to
be fully developed, the same pressure gradient G]GS is considered for both phases. Note though, that like the interface

position, G]GS is an unknown variable that will be determined as a function of the given volumetric flow rates.

Other terms appearing in Eqs. (1)-(3) are WLLL$ µµ += , WLLL% µσµ 2+= , WLLL& µσµ 1+= and XX$6 LL ∇⋅∇= .

The eddy viscosity for phase i is ωκραµ LWL 2= . The ωκ − model parameters 1α , 2α , 1β , 2β , 1σ and 2σ are non-

dimensional quantities. The symbol ∇ denotes the gradient operator in the cross-section analyzed. Thus, in terms of the

canonical base given by the Cartesian unit vectors [H and \H , we have \[ \[ HH
∂
∂+

∂
∂=∇ .

The model is completed by introducing boundary and interfacial conditions. The conditions on the symmetry
boundary VΓ are 0=⋅∇ QX , 0=⋅∇ Qκ and 0=⋅∇ Qω , where Q is the outward pointing unit vector on VΓ . The pipe

boundary FΓ is split into FIΓ and FJΓ , according to the phase which is in contact with the wall. Thus, the boundary

conditions on  FΓ are 0=X , 0=κ and FLωω = on FLΓ , meaning that the prescribed value depends on the properties of

the phase which is in contact with the pipe surface.
It is well known that ω goes to infinity on smooth pipe walls. In order to avoid this singular behavior, we employ

the same wall boundary condition implemented in the DEFT incompressible flow solver (Segal, 2006), which is given
by

2
0

2

SL

L
FL <ρβ

µω = (4)
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where 072.00 =β is a model constant and S< is the distance of the closest grid point to the wall.

At the interface intΓ we impose continuity of the shear stress and consider that the interface behaves like a nearly-

smooth wall (meaning that κ vanishes and ω is very large but bounded). These conditions are accomplished by setting

0
,

=⋅∇∑
=

L
JIL

L X$ Q , 0=κ and intωω = . We used in this work GX0
6

int 10=ω , where G is the pipe�diameter and 0X is

a reference velocity computed using the liquid phase flow rate and the pipe cross-sectional area $, i.e. $4X I=0 .

The problem described above can be recast in variational form as follows: Find X9X∈ , N9∈κ and ωω 9∈ , for

any φφ 9∈ and any ϕϕ 9∈ , such that

L
JIL

L
JIL

L GG]
GSGX$

LL

Ω−=Ω∇⋅∇ ∑ ∫∑ ∫
= Ω= Ω ,,

φφ (5)

L
JIL
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where,

{ }c1 on 0),( Γ=Ω∈= X+X9X (8)

{ }intc1 on 0,on 0),( Γ=Γ=Ω∪Ω∈= κκκκ JI+9 (9)

{ }intintci1 on ,on ),( Γ=Γ=Ω∪Ω∈= ωωωωωω FLJI+9 (10)

{ }c1 on 0),( Γ=Ω∈= φφφ +9 (11)

{ }intc1 on 0,on 0),( Γ=Γ=Ω∪Ω∈= ϕϕϕϕ JI+9 (12)

IΩ

JΩ

intΓ

FΓ

VΓ

Figure 1. Schematic representation of the pipe cross-section.
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Note that the problem described above is not closed: the pressure gradient G]GS and the interface position int\ ,

which ultimately defines the domains IΩ and JΩ , are unknown. The equations that close the model come from the

requirement to meet the imposed flow rates I4 and J4 , i.e.,

∫
Ω

Ω=
I

GX4 I 2 (13)

∫
Ω

Ω=
J

GX4J 2 (14)

���1XPHULFDO�WHFKQLTXHV
The solution is obtained by using an iterative process. This combines two numerical techniques. The first is an

external Newton-Raphson method aimed to adjust int\ and G]GS , in order to satisfy Eqs. (13, 14). The second, which

we call the flow solver, runs internally and involves the finite element solution of the non-linear problem given by Eqs.
(5-7), for given values of int\ and G]GS .

�����1HZWRQ�5DSKVRQ�VFKHPH
Let us suppose that, for a given pair of int\ and G]GS , we have a numerical method to approximate and solve Eqs.

(5-7) (such a method will be described in the next section). Then we can compute the mismatch of the flow rates
obtained for a given pair of int\ and G]GS and the flow rates I4 and J4 imposed as problem data. The mismatch

functions are

I4GX\G]
GS)

I

−Ω=




 ∫

Ω

2, int (15)

J4GX\G]
GS*

J

−Ω=




 ∫

Ω

2, int (16)

Introducing G]GS[ = and int\\ = to simplify notation, we can formulate the problem as a system of two non-

linear equations whose solution ([��\) must satisfy

0),( =\[) (17)

0),( =\[* (18)

The Newton-Raphson method is used to compute the solution of the above non-linear system. If Q[ , Q\ is the

present approximate solution, the next approximation is computed according to
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Therefore, starting from an initial guess, the above equations provide an iterative algorithm to obtain a solution of
the non-linear system given by Eqs. (17,18). The iterations proceed until the mismatch functions F and G are
considered to be negligibly small.
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Before we proceed, note that we need to compute derivatives of ) and * with respect to the unknowns [ and \. These
derivatives are evaluated numerically, by using small increments [∆ and \∆ . To compute them we have to evaluate )
and * at ),( QQ \[[ ∆+ , ( )\\[ QQ ∆+, and ( )QQ \[ , . This means that we need to solve Eqs. (5)-(7) three times for each

Newton-Raphson iteration.

�����)ORZ�VROYHU
Given the interface position and the pressure gradient, the finite element method is used to obtain an approximate

numerical solution of Eqs. (5)-(7).
The finite element mesh used is specially designed to have a large number of horizontal lines. Thus, for a given

interface position, a simple algorithm is used to find and select the mesh horizontal line that is closest to the desired
interface position. Then the finite element mesh is adjusted so that the selected horizontal line is moved to the desired
interface location. The finite elements above the interface are associated to phase g whilst the elements below it are
associated to phase f.

We use linear triangular finite elements to approximate the flow variables as SSX1X =ˆ , SS1 κκ =ˆ and

SS1 ωω =ˆ , where S1 are the finite element linear shape functions and SX , Sκ and Sω are the corresponding nodal

values.
Because Eqs. (5)-(7) are non-linear, an iterative process is required. Thus, the velocity field is updated by solving

the discretized counterpart of Eq. (5), i.e.,

1

,

1

,

free

ˆ

+

= Ω

+

= Ω

∀

Ω−=Ω∇⋅∇ ∑ ∫∑ ∫
Q
T

L
JIL
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Q

T
JIL

L

X

GG]
GS1GX1$

LL (21)

next, the kinetic energy is updated 1ˆ +Qκ solving

1

,
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1
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1
2

freeˆˆ
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+

= Ω
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+
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(22)

and finally, the new 1ˆ +Qω is obtained solving

1
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(23)

Eqs. (21)-(23) lead to symmetric systems of algebraic equations, which are solved using a Jacobi-preconditioned
conjugate gradient method.

The process of solving Eqs. (21)-(23) is repeated until a prescribed convergence criterion is satisfied.

�����&RGH�YHULILFDWLRQ
In order to check the turbulence model employed and the computer implementation of the code, we have tested our

procedures in a single phase problem, where we can compare our prediction for friction factor with corresponding
theoretical and correlated experimental data.

This rather simple test consists of assigning the same fluid properties and flow rates for both phases. We have also
relaxed the interface conditions on κ and ω . This permits mimicking a single-phase computation using our two-phase
computer code. As expected, the Newton-Raphson method found that the interface position is at the middle of the pipe,
at 0int =\ . The Newton-Raphson converged value for G]GS was used to compute the friction factor obtained in our

numerical experiment.
Figure 2 presents a comparison of our data with the theoretical friction factor for laminar flow and with the friction

factor predicted by Colebrook correlation for turbulent flow in a  hydrodynamically smooth circular pipe. Note that our
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results compare well with the expected values for both laminar and turbulent flow, although the friction factor was
over-estimated in the transition region.

)ULFWLRQ�IDFWRU

0.01

0.1

1

10

10 100 1000 10000 100000

5(

I
Colebook
64/RE
Simulation

Figure 2. Single-phase friction factor as a function of the Reynolds number: comparison of numerical simulation with
expected values.

���([SHULPHQWDO�WHFKQLTXHV
The experiments reported in this paper were conducted in the two-phase test rig of the Nuclear Engineering

Institute (IEN). The rig consists of a venturi mixer, a horizontal tube, an expansion reservoir and an air water separation
tank. The horizontal tube is a 5 m long stainless steel 316 with an inner diameter of  0.0512 m, followed by a short tube
0.6 m long transparent extruded acrylic with the same inner diameter. A detailed description of the test section can be
found in Faccini et al. (2004). The basic principles to measure liquid height in horizontal stratified two-phase flow are
illustrated in Fig. 3. The ultrasound pulse discharged from an emitter-receiver transducer, placed at bottom of tube, will
be transmitted through the water and then reflected back to the same transducer from air-water or tube wall-water
interfaces. Typical ultrasound signals acquired over a period of time and plotted as waveforms are shown in Fig.4 where
∆W� is the transit time of the ultrasound pulse through the tube wall and ∆W� is the transit time into the water. By
measuring ∆W� and knowing the sound velocity through water, the water film height can be calculated very accurately by

2
2WFK Z/

∆= (24)

where /K is the water thickness e FZ is the water sound velocity (at a given temperature).

The transit time signals are acquired during a period of 50 seconds, stored in a computer and then the results are
obtained calculating the interval time between two successive echoes.

Figure 3. Schematic of liquid height  measurement in stratified gas-liquid flow by ultrasonic pulse-echo technique.

The minimum /K can be estimated approximately by the water sound velocity divided by the transducer frequency

and the ultrasonic resolution is given by the transducer wavelength.
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Figure 4. Typical ultrasonic signals.

���1XPHULFDO�DQG�H[SHULPHQWDO�UHVXOWV
In this section we present results for the interface position int\ at various flow conditions, comparing the numerical

and experimental data obtained at IEN and the experiments performed by Masala (2004) at McMaster University. We
have also compared our data with results obtained using the model of Taitel & Dukler (1976). The flow rates and pipe
diameters used in the experiments and numerical computations are presented in Table 1.

Table 1. Flow rates and pipe diameters (G) for the cases analyzed.
CASE Pipe Diam. (d) (mm) Qg (m3/h) Qf (m3/h)

A 51.2 1.0 0.6
B 51.2 2.0 0.6
C 51.2 4.0 0.6

IEN

D 51.2 6.0 0.6
E 21.0 0.3 0.024
F 21.0 0.3 0.061
G 21.0 0.3 0.090

McMaster

H 21.0 0.3 0.121

We have performed numerical simulations for all the cases presented in Table 1. Figure 5 shows a typical result of
mesh, velocity and kinetic energy. Additionally, experimental results have been obtained for cases A to D.

Figure 5. Mesh, velocity and turbulent kinetic energy for case A.
Figure 6 shows typical pictures taken with a high-speed camera during the IEN experiments. Despite the fact that

the interfaces shown in Fig.6 are located in the upper part of the horizontal tube, it can be observed that the flow regime
is stratified for the flow rates considered. Note that the model idealization depicted in Fig.1 has a better match with the
flow pattern presented in Fig. 6(a) than with that shown in Fig. 6(b). A wavy interface such as that observed in Fig. 6(b)
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may require non-smooth interfacial conditions in order to obtain better results from the numerical model. This will be
investigated in a future work.

 (a)                                                                                        (b)

Figure 6. Stratified flow in the horizontal tube: a) 4I = 0.6 m3/h and 4J = 1.0 m3/h; b) 4I = 0.6 m3/h and4J = 6.0 m3/h.

Figure 7 shows the non-dimensionalized results for the interface position G\int as a function of volumetric

quality ( )JIJ 444 + , comparing the present simulation with the McMaster experiments performed by Masala (2004)

and with numerical predictions obtained using the model of Taitel and Dukler (1976). Figure 8 shows similar results,
this time comparing the present simulation with the experiments performed at IEN. Figures 7 and 8 show that the
results of the present simulation are in reasonable agreement with both sets of experimental data and the predictions of
the Taitel and Dukler model.

It is interesting to note that Masala’s experiments, for volumetric qualities higher than 0.80, have at least one of the
phases undergoing transition. As we have noticed in the single-phase simulation test, the numerical model over-
estimates the friction factor at transition. This may explain some discrepancy observed between the present simulation
results and Masala’s experiments on that volumetric quality range.
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Figure 7. Non-dimensional interface position as a function of the volumetric quality: comparison of present simulation
with experiments performed at McMaster University and numerical results from the Taitel & Dukler model.
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Figure 8. Non-dimensional interface position as a function of the volumetric quality: comparison of present simulation
with experiments performed at IEN and numerical results from the Taitel & Dukler model.

���&RQFOXVLRQV
In this paper we proposed physical and numerical models for stratified two-phase flows in horizontal pipes,

comparing results with experimental data obtained at IEN and with those obtained by Masala (2004). We have also
compared our simulation data with those obtained using the model of Taitel and Dukler (1976). The results indicate that
the ωκ − model is suitable for the numerical simulation of such flows. However, a better understanding on how to
impose interfacial values for κ and ω is needed before we can expect to obtain better agreement with experimental
data of stratified wavy two-phase flow.

The computational code is being parallelized to run on a Beowulf type cluster. It is expected that with a parallel
version of the code we will be able to re-calculate the cases presented here in much finer meshes, with possible
improvement of the quality of the numerical results.
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